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Introduction 
 
 
 This document discusses the application of quaternions for robotic spacecraft 
orientation encapsulation – also referred to as attitude or pointing.  It is written to connect 
formal mathematical presentations of quaternion arithmetic with documents and software 
within NASA’s SPICE ancillary information system.  The primary intent of these notes is 
to eliminate future data system problems that might stem from the absence of standards 
associated with quaternions and the mathematical underpinnings.   

 
The NAIF documents “Rotations Required Reading” and “C-kernel Required 

Reading” contain consistent specifications and examples for the use of quaternions in the 
SPICE context.  These conventions carry through to subroutine modules provided in 
SPICELIB (and CSPICE) to deal with quaternions.  There are at least two distinct 
conventions for quaternion usage that are common in the literature, but neither of these 
NAIF documents addresses the subtle differences between them.  This document is 
designed to help bridge that gap and draw attention to these subtleties.   
 
 This text is primarily composed in layman’s terminology and language.  It is 
intended to provide SPICE users the necessary information to interface with external data 
or software that may not conform to the SPICE quaternion model.  This set of notes as 
written is neither completely rigorous nor comprehensive.  For “complete” details the 
reader is referred to the references. 
 
Quick Start 
 
  
 A description of the SPICE standard and a procedure for determining whether 
external quaternions conform are provided in subsequent sections of the present 
document. 
  

If the quaternions that require importation into the SPICE system do not agree 
with the SPICE standard, then in most cases the following transformation is all that is 
required: 

),,,( 3214 qqqqQs −−−=  
 
where the original, non-SPICE quaternion is ),,( 4,321 qqqq  and Qs is the equivalent 
SPICE style quaternion.  Comparing the rotation matrix produced from the converted 
quaternion in the SPICE context and the original quaternion in its context should validate 
this transformation.  If the matrices are identical then no additional work aside from the 
above transformation is required. In the event that they disagree then the remainder of 
this document will help assess possible causes. 
 



Rotational Pitfalls 
 
 
 Before delving into the issues that surround quaternions and their association with 
rotations, it is useful to briefly review rotations in general and some points of possible 
confusion.   The term rotation matrix is used throughout this document and for all 
purposes can be considered synonymous with the terms C-matrix and direction cosine 
matrix. 
 
 All descriptions of rotations, whether explicit or implicit, prescribe an axis about 
which rotation occurs and an angle (including a sign) specifying the amount and direction 
of rotation.  Attempts at defining rotations without the aid of a rigorous mathematical 
system are often plagued with uncertainties revolving around what one means by frame, 
angle, and axis.  Further, most misunderstandings have precisely the same effect—
yielding rotation in the improper direction.  The composition of several 
misunderstandings can lead to correct results in one context, incorrect in another, and 
frustration in general. 
 
 While one is inclined to believe complete mathematical systems designed to 
describe rotations leave little room for ambiguity or confusion, it is often one’s 
preconceived notions brought into conflict with the established system that are the source 
of confusion here.  In either of the two cases, before interfacing can be accomplished 
successfully both parties must be certain they are speaking precisely the same language. 
 
Positive Angles of Rotation 
 
 
 Perhaps the first potential area of confusion lies in the description of the positive 
angle of rotation.  The left and right hand rules provide a convenient mechanism for 
enumerating the two possible definitions.  Take the thumb of the appropriate hand and 
point it in the direction of the axis of rotation.  Then the remaining fingers on that hand 
curl around the axis in the positive direction of rotation. The right hand rule is almost 
always employed to describe positive rotations. For the remainder of this document, all 
positive rotations are characterized by the right hand rule. 
 
 
Coordinate vs. Vector Rotations 
 
 
 Another area of confusion that is closely connected to the definition of angle is 
whether one is attempting to describe a coordinate system (frame) rotation or rotation of a 
vector within a fixed coordinate system.  Consider the following diagram: (The invisible 
rotation axis (k) points out of the page or screen from the intersection of the i and j axes.) 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The figure above illustrates two different views of precisely the same rotation.  In A the 
vector V is rotated through a positive angle about the axis of rotation that points out of 
the page.  In B the coordinate frame is rotated through an angle of the same magnitude 
that is negative in sign.  Here lies the potential for confusion; when one says rotate a 
certain number of degrees about an axis, do they mean a vector rotation as in A, or a 
coordinate frame rotation as in B. 
 
 
Matrix Multiplication: Left vs. Right 
 
 
 One of the most common means of encapsulating a rotation mathematically is 
through use of matrices.  However usage of a matrix requires a common definition of the 
basic set of matrix operations especially multiplication.  There are many possible ways 
one can effect matrix multiplication, but the following is standard fare in the mathematics 
community: 
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where V’ and V are the vectors and M is the matrix.  However it is possible to define 
multiplication to occur on the right as shown below: 
 

Left matrix multiplication. 
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Fig. B: Coordinate System Rotation 
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Fig. A: Vector Rotation 
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Using the standard rules of matrix multiplication, taking a matrix intended for left 
multiplication, and applying it on the right produces a vector rotated about the same axis, 
but in the opposite direction.  
 
Base and Target Frames 
 
 
 The last issue that this brief review of rotations addresses is the sense of rotation.  
Some refer to a rotation as from base frame to target frame, while others mean precisely 
the opposite.  Confusion here may also result in a rotation about the proper axis but in the 
wrong direction. 
 
 
Quaternions 
 
 
 A quaternion is a mathematical construct that consists of four individual numeric 
components.  Quaternions are a convenient mechanism for encapsulating orientation 
information since they require only four units of numeric storage, as opposed to the nine 
needed for a rotation matrix.  Unfortunately there are no standards defining construction 
of quaternions, the underlying associated mathematics, or the connection to rotations.  In 
the absence of such standards, different organizations adopt disparate definitions, which 
makes communication difficult.  It is the intent of the remainder of this document to draw 
the reader’s attention to the two most commonly used quaternion systems in the robotic 
spacecraft community, and discuss the relevant issues in interpreting quaternions from 
other possible systems. 
 
 Let’s begin by illuminating the commonalties across the quasi-standards in 
common use.   
 
(1) One of the quaternion components is designated as the scalar, while the remaining 

three are typically referred to as the vector components.  The reason for this is fairly 
straightforward; the vector components contain the information that specify the axis 
of rotation, while the scalar component is used to determine the magnitude of the 
rotation angle. 

 
(2) Rotations obey the right hand rule. 
 
(3) All quaternions that specify rotations are required to be of unit length.  By this we 

simply mean the sum of the squares of the components is unity. 

Right matrix multiplication. 



 
(4) Any Cartesian reference frame can be rotated into any other Cartesian frame using a 

single quaternion.   
 
(5) There are two quaternions that yield the same end condition, but the rotation “path” 

taken is different.  
 
 Normally we’re not interested in rotating one reference frame into another—
rather we are interested in rotating (transforming) a vector specified in one frame into the 
other frame.  Proper use of the quaternion does this.  In the space science domain 
quaternions are frequently used to specify “pointing” of an instrument or a spacecraft.  
That lingo is a bit misleading: the quaternion is really used to specify the orientation of a 
Cartesian reference frame that is fixed to an instrument or to a spacecraft (or some 
spacecraft structure) relative to a “known” reference frame—the base frame.  This 
specification of the orientation can then be utilized to develop the appropriate 
transformation. 
 
 As a point of interest, given a quaternion, one can construct an equivalent 3x3 
rotation matrix and vice versa.  However, formation of a rotation matrix is not required to 
use quaternions.  Indeed, quaternions are used instead of matrices because they require 
less storage space, they avoid singularities, and they offer other useful properties. 
 
 
SPICE Quaternions 
 
 
 The specifications used within the SPICE system—and thus as the PDS 
specification—are selected simply because the large collection of extant codes and 
documentation that follow this “standard,” including the fact that the SPICE C-kernel, 
which is really a collection of quaternions (not direction cosine matrices), assumes this 
definition. 
 

Let ),,,( 3210 qqqqQ = , be a unit quaternion. 
Let φ  be the magnitude of the coordinate system rotation angle from the base 

frame measured positively (using the right hand rule). 
Let ),,( 321 rrrR =  be a unit vector specifying the rotation axis, defined in the base 

frame. 
 
 In the SPICE standard, the 0th component is the scalar and the 1st, 2nd, and 3rd 
components constitute the vector components.  Then the quaternion that encapsulates this 
rotation would be: 
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 A rotation matrix is formed from a quaternion constructed per the SPICE standard 
thusly: 
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 One can effect rotations at the quaternion level.  This is accomplished in the 
SPICE style quaternions through the following relations: 
 

Let ),,( 321 aaaAb = be a vector in the base frame. 
Let ),,( 321 tttAt = be the coordinates of vector bA  in the target frame. 
Let ),,,( 3210 qqqqQ = be the SPICE style quaternion that describes the rotation 

that transforms bA  into tA . 
  
 Define the conjugate of Q  to be ),,,(* 3210 qqqqQ −−−= . Note we are just 
negating the vector components of the quaternion. 
 
 Permit the extension of the three component bA to a quaternion having four 
components as ),,,0( 321 aaaAqb = .  Note the choice of the scalar component as zero is 
arbitrary, since whatever value is selected is preserved by the rotation. 
 
 Define the product of two quaternions to be: 
 

( ) ( )vvvvvv zyyzzyzyzyZY ×+++−=• 0000 ,  
 
where 0y  and 0z  are the scalar components of Y and Z respectively, and vy  and vz  are 
the vector components.  Note ,  denotes the standard scalar or inner product, and ×  the 
standard vector or cross product. 
 
 The quaternion Q can be utilized to compute the appropriate rotation: 
 

*QAQA q
b

q
t ••= , 

 
where q

tA  and q
bA  are the target and base frame vectors extended to quaternions as 

specified above. 



 
Alternate Style Quaternions 
 
 
 The other popular quaternion specification is discussed in detail in this section.  
The relations will look nearly identical to the SPICE style discussed above; as such it is 
important to READ CAREFULLY and to clearly understand that all of the material in 
this section is part of the alternate specification.  Contrasting comments and necessary 
operations for conversion will be held for the next section. 
 

Let ),,,( 4321 qqqqQ = , be a unit quaternion. 
Let φ  be the magnitude of the coordinate system rotation angle from the base 

frame measured positively (using the right hand rule). 
Let ),,( 321 rrrR =  be a unit vector specifying the rotation axis, defined in the base 

frame. 
 
 In this style, the 4th component is the scalar and the 1st, 2nd, and 3rd components 
constitute the vector components.  Then the quaternion that encapsulates this rotation 
would be: 
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 And the associated rotation matrix when multiplied by vectors in the base frame 
from the left produces vectors in the target frame: 
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 One can effect rotations at the quaternion level.  This is accomplished using this 
alternate style quaternion through the following relations: 
 

Let ),,( 321 aaaAb = be a vector in the base frame. 
Let ),,( 321 tttAt = be the coordinates of vector bA  in the target frame. 
Let ),,,( 4321 qqqqQ = be the alternate style quaternion that describes the rotation, 

that transforms bA  into tA . 
  
 Define the conjugate of Q  to be ),,,(* 4321 qqqqQ −−−= . Note we are just 
negating the vector components of the quaternion. 
 



 Permit the extension of bA to a quaternion as )0,,,( 321 aaaAqb = .  The choice of 
the scalar component as zero is arbitrary.  
 
 Define the product of two quaternions to be: 
 

( ) ( )vvvvvv zyyzzyzyzyZY ×−++−=⊗ 4444 ,  
 
where 4y  and 4z  are the scalar components of Y and Z respectively, and vy  and vz  are 
the vector components.  Note ,  denotes the standard scalar or inner product, and ×  the 
standard vector or cross product.  
 
 The quaternion Q can be utilized to compute the appropriate rotation: 
 

*QAQA q
b

q
t ⊗⊗= , 

 
where q

tA  and q
bA  are the target and base frame vectors extended to quaternions as 

specified above. 
 
Example 
 
 
Consider the following example: 
 
Let ( ) o13.533

4arctan ≅=φ  be the coordinate system rotation angle. 

Let )1,0,0(=R be the axis of the coordinate rotation. 
 

SPICE Quaternions  Alternate Style Quaternions 
The SPICE quaternion that represents this 
rotation is: 
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Which yields the following matrix when 
converted using the methodology discussed 
above: 
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And now ask the question what coordinates 

 The alternate style quaternion that 
represents this rotation is: 
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Which yields the following matrix when 
converted using the methodology discussed 
above: 
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And now ask the question what coordinates 



does the vector: [ ]TBV 0,1,1= have in the 
target frame. 
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However, one can elect to use quaternion 
arithmetic to effect this transformation. 
Extend  BV  to a quaternion and apply the 
SPICE style multiplication to obtain: 
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does the vector: [ ]TBV 0,1,1= have in the 
target frame. 
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However, one can elect to use quaternion 
arithmetic to effect this transformation. 
Extend  BV  to a quaternion and apply the 
alternate style multiplication to obtain: 
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So the end results are the same, if one ignores the permutation of scalar and vector 
components that occurs between the two systems. 
 
 
Differences between Quaternion Specifications 
 
 
 There are two critical differences between the SPICE specification and the 
alternate presented above.  The first and perhaps most obvious is the permutation of the 
scalar and vector components.  The SPICE quaternions place the scalar first, while the 
alternate system reserves this for the last component.  The less obvious and most 
impacting difference is the formulation of the multiplication operation.  In the SPICE 
system the sign of the cross product component is positive, while in the alternate system 
this is negative.  This difference has the effect of inverting the sense of the rotation, so to 
convert alternate style quaternions to the SPICE specification one need only define: 

),,,( 3214 qqqqQs −−−= , where qi are the original components as listed in the alternate 
specification. 
 
Checklist 
 
 
 When importing quaternions from an external source to the SPICE system the 
following issues require examination: 
 



(1) Examine the order of the external source quaternion components.  Clearly identify 
the scalar and vector components. Identifying the order of the vector components 
is as important as recognizing them. 

(2) Check the multiplication formulation.  Make certain that the definition of 
multiplication is consistent with the SPICE definition outlined above.  One may 
elect to examine the external source quaternion conversion to rotation matrices 
using the SPICE methodology, and if it agrees with the external source procedure 
for producing rotation matrices this is sufficient. 

 
(3) Verify that the rotational issues discussed at the beginning of this document are 

clearly resolved.  Namely, does the external source define quaternions that 
produce rotations from base frame to target frame as in SPICE, or vice versa.  If 
necessary, check that the rotation matrix output by the external source is intended 
for left matrix multiplication.  Lastly, check that the right hand rule is in effect. 

 
(4) The final issue that one should be aware of when dealing with quaternions is that 

some systems may effect rotations through quaternion multiplication in the 
following way: 
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This is the same as: 

 
( )**QAQA q

b
q
t ••=  

 
So the use of quaternions from such a system often results in rotations occurring 
in the incorrect direction, since the conjugate effectively changes the sign of the 
rotation angle. 
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